Gene Editing Strategy Eliminates HIV-1 Infection





Technology, 02 May - 2017 ,

Gene Editing Strategy Eliminates HIV-1 Infection
Credit:2013.igem.org

A permanent cure for HIV infection remains elusive due to the virus's ability to hide away in latent reservoirs. But now, in new research published in print May 3 in the journal Molecular Therapy

A permanent cure for HIV infection remains elusive due to the virus's ability to hide away in latent reservoirs. But now, in new research published in print May 3 in the journal Molecular Therapy, scientists at the Lewis Katz School of Medicine at Temple University (LKSOM) and the University of Pittsburgh show that they can excise HIV DNA from the genomes of living animals to eliminate further infection. They are the first to perform the feat in three different animal models, including a "humanized" model in which mice were transplanted with human immune cells and infected with the virus.

The team is the first to demonstrate that HIV-1 replication can be completely shut down and the virus eliminated from infected cells in animals with a powerful gene editing technology known as CRISPR/Cas9. The work was led by Wenhui Hu, MD, PhD, currently Associate Professor in the Center for Metabolic Disease Research and the Department of Pathology (previously in the Department of Neuroscience) at LKSOM; Kamel Khalili, PhD, Laura H. Carnell Professor and Chair of the Department of Neuroscience, Director of the Center for Neurovirology, and Director of the Comprehensive NeuroAIDS Center at LKSOM; and Won-Bin Young, PhD. Dr. Young was Assistant Professor in the Department of Radiology at the University of Pittsburgh School of Medicine at the time of the research. Dr. Young recently joined LKSOM.

The new work builds on a previous proof-of-concept study that the team published in 2016, in which they used transgenic rat and mouse models with HIV-1 DNA incorporated into the genome of every tissue of the animals' bodies. They demonstrated that their strategy could delete the targeted fragments of HIV-1 from the genome in most tissues in the experimental animals.

In the new study, the team genetically inactivated HIV-1 in transgenic mice, reducing the RNA expression of viral genes by roughly 60 to 95 percent, confirming their earlier findings. They then tested their system in mice acutely infected with EcoHIV, the mouse equivalent of human HIV-1.

 


Scientific India Newsletter

Enter your email address:


© 2013-2014 Scientific India Magazine

Note: This website is for educational Purposes only.